
Developer  

Days 

2014 

Write Event-based programs again 

sequentially  

or  

how to Clean Code in 

asynchronous programs. 
 

 

Helge Betzinger 

CTO 

pcvisit Software AG 



Developer  

Days 

2014 
Agenda 

• What is the problem and how to escape?   

• coasync4cpp let you program TODAY without 
callbacks! 

• Where to go from here? 

• No more Callbacks!  



Developer  

Days 

2014 

A typical requirement for a application these days…  

What is the problem and how to escape? 

If the user clicks the button, than replace 

the image within his clipboard by a URL 

with a copy of this image within the cloud.  



Developer  

Days 

2014 

A typical requirement for a application these days…  

What is the problem and how to escape? 

If the user clicks the button, than replace 

the image within his clipboard by a URL 

with a copy of this image within the cloud.  

please wait for the next slide

clicking won’t make it come any faster



Developer  

Days 

2014 

A typical requirement for a application these days…  

What is the problem and how to escape? 

If the user clicks the button, than replace 

the image within his clipboard by a URL 

with a copy of this image within the cloud.  

The UI must stay responsive all the time. 



Developer  

Days 

2014 
What is the problem and how to escape? 

Async becoming the 

norm! 



Developer  

Days 

2014 



Developer  

Days 

2014 
Example: Concurrent waiting with signals 

void MainView::uploadImageFromFile(const QString &filePath) 
{ 
    QJsonObject object;  
    // configure object … 
    EnginioReply *reply = mModel->append(object); 
    connect( reply, &EnginioReply::finished,  
             this, &MainView::beginUpload);  
} 
 
void MainView::beginUpload(EnginioReply *reply) {  
    reply->deleteLater(); 
    // use result/reply here ..  
} 
 

1) Manage the 

control flow of the 

application 

3) Business logic 

related code 

2) Manage 

resources of the 

infrastructure 



Developer  

Days 

2014 
Example: Concurrent waiting with futures 

 
File saveCliprdToDisk(); 
 
std::future<File> f = std::async(saveCliprdToDisk); 
 
f.get() ; // this blocks, until saveCliprdToDisk is done! 
    // even the destructor of std::future blocks!  
 

C++11 



Developer  

Days 

2014 
Example: Concurrent waiting with boost 

 
boost::future<File> f = boost::async(saveCliprdToDisk); 
 
f.then( [] (boost:: future<File> savedF ) { 
  // use result.get() here ...  
  uploadImage( savedF.get()).then( 
    [=] (future<Reply> uploadedFile) { 
      requestUrl (uploadedFile.get()).then( 
        ... 
      ); 
    } 
  ); 
}); 
     

C++ standard proposal N3558, Boost.Thread 1.55.0 



Developer  

Days 

2014 
What is the problem and how to escape? 

And what about  

Clean Code? 



Developer  

Days 

2014 

And what about  

Clean Code? 



Developer  

Days 

2014 



Developer  

Days 

2014 
… how to escape? 

 
Document number: N3721 
Date:  2013-08-30 
Reply-to:  Niklas Gustafsson <niklas.gustafsson@microsoft.com> 
  Artur Laksberg <arturl@microsoft.com> 
  Herb Sutter <hsutter@microsoft.com> 
  Sana Mithani <sanam@microsoft.com> 

 

Improvements to std::future<T> and Related APIs 



Developer  

Days 

2014 
What is the problem and how to escape? 

coasync4cpp  

let you do asynchronous 

programming without 

callbacks 



Developer  

Days 

2014 Coasync4cpp - How it works 

File saveCliprdToDisk(); 
 
std::future<File> f = std::async(saveCliprdToDisk); 
 
File f = f.get() ; // this blocks, until saveCliprdToDisk is 
done! 
 
 
File f = Task( boost::async( saveCliprdToDisk )); 
 
 
File f = await Task( boost::async( saveCliprdToDisk )); 
 
 
File f = await boost::async( saveCliprdToDisk ); 
 
 



Developer  

Days 

2014 Coasync4cpp - How it works 

File saveCliprdToDisk(); 
 
std::future<File> f = std::async(saveCliprdToDisk); 
 
File f = f.get() ; // this blocks, until saveCliprdToDisk is 
done! 
 
 
File f = Task( boost::async( saveCliprdToDisk )); 
 
 
File f = await Task( boost::async( saveCliprdToDisk )); 
 
 
File f = await boost::async( saveCliprdToDisk ); 
 
 



Developer  

Days 

2014 Overview coasync4cpp 

Task<…> 
Wrap around a awaitable to make  

code simpler 

Allows to use Task/await within a routine 



Developer  

Days 

2014 Overview coasync4cpp 

await 
Unwraps value of a given awaitable without 

blocking your thread 



Developer  

Days 

2014 

bindAsTask(void Button_Click()) { 

  QUrl url = await clip2UrlAsync ()); 

                  url2clip(url); 

} 

Task<QUrl> clip2UrlAsync () { 

 … 

 return Task<QUrl>(); 

} 

Click 

Understanding async Tasks 
M

e
ss

a
g

e
 P

u
m

p
 w

it
h

 T
a
sk

D
is

p
a
tc

h
e
r 

Task 
Url  

available.. 



Developer  

Days 

2014 Example using await 

Button.connect( bindAsTask( &MainView::convertIntoUrl, this )); 
 
File saveCliprdToDisk();  
QNetworkReply * uploadImage ( File );  
QNetworkReply * requestUrl ( QNetworkReply * );  
void put2clipboard(Qurl); 
 
void convertIntoUrl() { 

File tmpFile = await boost::async( saveCliprdToDisk()); 
QNetworkReply * uploadedFile = await uploadImage( tmpFile ); 
QNetworkReply * fileUrl = await ( requestUrl, uploadedFile ); 
put2clipboard( fileUrl->result()); 

} 
 



Developer  

Days 

2014 Example using Task 

Button.connect( bindAsTask( &MainView::convertIntoUrl, this )); 
 
Task<File> saveCliprdToDiskAsync();  
Task<QNetworkReply * > uploadImageAsync( File );  
Task<QUrl> requestUrlAsync(QNetworkReply * );  
void put2clipboard(QUrl); 
 
void convertIntoUrl() { 

auto tmpFile = saveCliprdToDiskAsync(); 
auto uploadedFile = uploadImageAsync( tmpFile ); 
auto fileUrl = requestUrlAsync( uploadedFile ); 
put2clipboard(fileUrl); 

} 
 
 



Developer  

Days 

2014 

Task<> 

await 

Task  

Factories 

Awaitables 

Task 

Dispatcher 

creates 

from 

methods 

awaits 

empowers 



Developer  

Days 

2014 Task Factories 

make_task 
 

Creates an Task<R> from anything, 

that is callable 

 

Starts the method immediatelly 

bindAsTask 
 

Creates an  

std::function< Task<R> (…) >  

from anything, that is callable 

 

Start the method later, with 

invocation of the function object 



Developer  

Days 

2014 Task Factories 

taskify 
 
auto taskify( method, placeholders::CALLBACK, Args…)  
-> Task< std::tuple< P… > > ;  

 

Starts the method immediatelly  

Transforms the callback into an awaitable Task 
 

Returns a Task with a std::tuple, containing the parameters of the CALLBACK.  

method can be anything, that is callable 

CALLBACK must be a function object.  

placeholders::EXCEPTION also supported 



Developer  

Days 

2014 Awaitables 

Task<…> 

boost::future<R> 
 

Operation is already running 

 

await directly 

Store and await later 

Create a Task from it and get result or await later 



Developer  

Days 

2014 Helper: TaskDispatcher 

TaskDispatcher4StdThread 

TaskDispatcher4QtThread 

ThreadWithTasks 
 

Creates an dispatcher for Tasks within current thread or creates a new 

thread with a dispatcher in it 

 

Prerequisite to get Task<> working within a particallary thread! 



Developer  

Days 

2014 Summary Usage 

1. Instanciate suitable TaskDispatcher 

in your thread 

 

2. Call async method as Task, using a 

Task Factory 

 

3. Use await/Task with any Awaitable 

within this method 



Developer  

Days 

2014 Example using Task 

Button.connect( bindAsTask( &MainView::convertIntoUrl, this )); 
 
Task<File> saveCliprdToDiskAsync();  
Task<QNetworkReply * > uploadImageAsync( File );  
Task<QUrl> requestUrlAsync(QNetworkReply * );  
void put2clipboard(QUrl); 
 
void convertIntoUrl() { 

auto tmpFile = saveCliprdToDiskAsync(); 
auto uploadedFile = uploadImageAsync( tmpFile ); 
auto fileUrl = requestUrlAsync( uploadedFile ); 
put2clipboard(fileUrl); 

} 
 
 



Developer  

Days 

2014 
What is the problem and how to escape? 

coasync4cpp  

makes consuming async 

APIs simple 



Developer  

Days 

2014 
What is the problem and how to escape? 

Where to go from here? 



Developer  

Days 

2014 Where to go from here? 

Play around with 

testcoasync4cpp and 

testcoasync4qt to understand 

https://github.com/helgebetzinger/coasync4cpp 



Developer  

Days 

2014 coasync4cpp 

https://github.com/helgebetzinger/coasync4cpp 

coasync4cpp 

coasync4qt 

testcoasync4cpp 

testcoasync4qt 

utilize 

test 

test 

 Googletest 
 Google C++ Testing Framwork 

coroutine; threading  

depends on  depends on  



Developer  

Days 

2014 What can you expect from version 0.10? 

Simple integration with legacy 

code 

https://github.com/helgebetzinger/coasync4cpp 



Developer  

Days 

2014 What can you expect from version 0.10? 

More 

Awaitables 
 

QFuture* 

QNetworkReply*  

EnginioReply* 

More 

Task Factories 
 

 

taskifyQtSignal 
 

More Msg-Dispatchers 

https://github.com/helgebetzinger/coasync4cpp 



Developer  

Days 

2014 What can you expect from version 0.10? 

 

Extended build support 
 

clang, cmake 

https://github.com/helgebetzinger/coasync4cpp 



Developer  

Days 

2014 
What is the problem and how to escape? 

coasync4cpp@pcvisit.com 

https://github.com/helgebetzinger/coasync4cpp 

Watch the project and stay tuned 

 

Comment and report issues and 

requirements 

 

Contribute added features  

or fixed bugs 



Developer  

Days 

2014 
What is the problem and how to escape? 

No more callbacks! 

Questions? 

coasync4cpp@pcvisit.com 

https://github.com/helgebetzinger/coasync4cpp 



Developer  

Days 

2014 
What is the problem and how to escape? 

coasync4cpp@pcvisit.com 

https://github.com/helgebetzinger/coasync4cpp 



Developer  

Days 

2014 
What is the problem and how to escape? 

Best Practices for App-

developers 



Developer  

Days 

2014 Future themes 

Using it with legacy code 

Extension Points (Awaitables, 

TaskDispatcher) 

Best Practices 

Interplay between sync and async code 

Async API 

Exception 

Subscribe the project on github 

Comment on feature request or bugs 

(instead of voting ;-)  



Developer  

Days 

2014 Exceptions 

Exceptions 



Developer  

Days 

2014 Best Practices 

Cannot await top level 



Developer  

Days 

2014 Best Practices 

Maximize parallelism for 

I/O bound work 



Developer  

Days 

2014 Best Practices 

Library methods should 

not lie 



Developer  

Days 

2014 Best Practices 

If your async void method has 

side effects, return Task<void> 

anyway 



Developer  

Days 

2014 Best Practices 

Convert Signals into 

Tasks 



Developer  

Days 

2014 Best Practices 

Take care  

of your locks! 



Developer  

Days 

2014 Best Practices 

Is it CPU Bound  

or I/O Bound? 



Developer  

Days 

2014 
What is the problem and how to escape? 

Archive 



Developer  

Days 

2014 Task Factories 

make_task 

taskify 

bindAsTask 
 

Creates an Task from anything, that is callable, an callback , event  or 

signal. 

 

Starts the method immediatelly or later 

 
Adds an separate stack to your routine 



Developer  

Days 

2014 Overview coasync4cpp 

make_task 
“makes your method asynchronous” 

lets you put awaits and Tasks in it 



Developer  

Days 

2014 Helpers 

bind2current 

bind2thread 



Developer  

Days 

2014 
Example: Concurrent waiting with QFutureWatcher 

File saveCliprdToDisk(); 
 
QFuture<File> qfuture = QtConcurrent::run(saveCliprdToDisk); 
 
auto watcher = new QFutureWatcher<File>(); 
 
QObject::connect( watcher, &QFutureWatcherBase::finished,  
  [=] { 
    // use watcher->result() here ...  
    watcher->deleteLater(); 
      }); 
watcher->setFuture(qfuture); 
     



Developer  

Days 

2014 Awaitables 

Task<R> 

boost::future<R> 
 

Operation is already running 

 

await directly 

Store and await later 

Create a Task from it and get result or await later 



Developer  

Days 

2014 Awaitables 

QFuture* 

QNetworkReply* (impl. using 

taskifyQtSignal) 

EnginioReply* (impl. using taskifyQtSignal) 
 

Operation is already running 

 

await directly 

Store and await later 

Create a Task from it and get result or await later 



Developer  

Days 

2014 Task Factories 

taskifyQtSignal 
 
auto taskifyQtSignal( R(Args…), obj )  
-> Task< std::tuple< Args… > > ;  

 

Starts an task immediatelly or later explicit 

 

Returns a Task with a std::tuple, containing the parameters of the 

signal.  



Developer  

Days 

2014 coasync4cpp 

https://github.com/helgebetzinger/coasync4cpp 

Requirements design coasync4cpp library  

 

• Solve the problem!  

• Applicable on Legacy Code / Brownfield Code 

• Preferably Compatible with upcoming C++ Developments C++1xx  

• don’t hide the interfaces of used future implementation to prevent lock out of 

existing tools around them 

• Enhancements points for smooth integration with other libraries, as Qt  

 



Developer  

Days 

2014 
What is the problem and how to escape? 

coasync4cpp@pcvisit.com 

https://github.com/helgebetzinger/coasync4cpp 


